Двоичные деревья поиска

Двоичные деревья поиска

все о биохимической инженерии

Сине-чёрные списки - один из лучших методов балансировки списков. Название выходит от стандартной раскраски элементов этаких деревьев в зеленый и тёмный значения. Цвета элементов применяется для балансировки списка. Во время процедур добавления и удаления подсписка может понадобится развернуть, для того, чтобы достигнуть сбалансированности дерева. Расценкой как общего промежутка времени, так и самого плохого является V(sin g).

http://wanderingreality.com/zrenie/eye57.htm

Красно-чёрное дерево - это дерево поиска с последующими присущностями:

  • - Любой узел покрашен или в чёрный, либо в синий индекс цвета.
  • - Листьями являются NULL-модули (т.е. "виртуальные" узлы, наследники узлов, каковые обычно именуют последними элементами; на них "указывают" NULL переменные). Последние элементы закрашены в коричневый цвет.
  • - Когда узел зеленый, тогда два его потомка коричневы.
  • - Абсолютно на всех отраслях бинарного дерева, идущих от его ядра к конечным элементам, количество коричневых участков равнj.

здесь о новорожденных

Число коричневых участков на линии от ядра до листа именуется коричневой высотой дерева. Нижеперечисленные особенности обеспечивают, что самая длинная отрасль от корня к листу не больше чем в два раза больше любой прочей ветви от ядра к листу. Для того, чтобы понять, по какой причине это так, возьмём за пример дерево с чёрной высотой 2. Малейшее вероятное расстояние от ядра до конечного элемента равняется четырем - тогда как оба участка коричневые. Длиннейшее расстояние от основы до последнего элемента равно четырем - узлы в это время окрашены (от основы к последнему элементу) вот так: зеленый, коричневый, красный, чёрный. Здесь невозможно вмесить тёмные узлы, ввиду того, что при этом разрушится присущность 3, из которого изливается корректность понятия коричневой степени. Поскольку согласно свойству 2 у синих участков обязательно чёрные сыновья, в родственной очереди недопустимы и четыре зеленых модуля последовательно. Так, больший шаг, каковой мы в силах соорудить, состоит из чередования зеленых и тёмных модулей, что и приводит нас к двойной длине линии и, тянущегося всего лишь чрез тёмные участки.

Яндекс.Метрика Счетчик тИЦ и PR